Control Chart for Non-Normal Data Example: Log-normal Distribution with Negative Values
This paper addresses 3-parameter log-normal distribution control charting. Statistical Process Control (SPC) has a primary purpose, which is to identify when special cause conditions occur for timely corrective actions. SPC textbooks and training state that an individuals control chart (X) or an individuals and moving range chart (XmR) control chart is appropriate and should be used when tracking individuals data. With an individuals chart, between subgroup variability affects the magnitude of the control limits from the overall response mean. This paper illustrates how the individuals control chart is not robust to non-normality. When data are not normally distributed (e.g., when there is a boundary condition) the data need a normalizing transformation that is appropriate for the process being evaluated. The log-normal distribution often is a good fit for these situations. However, the log-normal distribution cannot accept negative numbers, which are often needed to describe this type of process response. This paper describes the use of the 3-parameter log-normal distribution in 30,000-foot-level control charting. In this 30,000-foot-level metric reporting methodology, process response is evaluated for regions of stability. Within identified stable regions, a process capability non-conformance estimate can then be reported if a specification exists. If there is a recent region of stability, one can consider the data in this region to be a random sample of the future; hence, a prediction statement can be made. An enterprise can assess its value-chain metrics collectively – where each has 30,000-foot-level reporting – to determine where improvements can be made that positively impact the enterprise financials as a whole. Goals to these metrics would pull for a process improvement or design project creation that positively impacts these 30,000-foot-level metrics.
Control Chart for Non-Normal Data Example: Log-normal Distribution with Negative Values Read More »